3.3.93 \(\int \frac {\sqrt {b x+c x^2}}{(d+e x)^5} \, dx\) [293]

3.3.93.1 Optimal result
3.3.93.2 Mathematica [A] (verified)
3.3.93.3 Rubi [A] (verified)
3.3.93.4 Maple [A] (verified)
3.3.93.5 Fricas [B] (verification not implemented)
3.3.93.6 Sympy [F]
3.3.93.7 Maxima [F(-2)]
3.3.93.8 Giac [B] (verification not implemented)
3.3.93.9 Mupad [F(-1)]

3.3.93.1 Optimal result

Integrand size = 21, antiderivative size = 258 \[ \int \frac {\sqrt {b x+c x^2}}{(d+e x)^5} \, dx=\frac {\left (16 c^2 d^2-16 b c d e+5 b^2 e^2\right ) (b d+(2 c d-b e) x) \sqrt {b x+c x^2}}{64 d^3 (c d-b e)^3 (d+e x)^2}-\frac {e \left (b x+c x^2\right )^{3/2}}{4 d (c d-b e) (d+e x)^4}-\frac {5 e (2 c d-b e) \left (b x+c x^2\right )^{3/2}}{24 d^2 (c d-b e)^2 (d+e x)^3}-\frac {b^2 \left (16 c^2 d^2-16 b c d e+5 b^2 e^2\right ) \text {arctanh}\left (\frac {b d+(2 c d-b e) x}{2 \sqrt {d} \sqrt {c d-b e} \sqrt {b x+c x^2}}\right )}{128 d^{7/2} (c d-b e)^{7/2}} \]

output
-1/4*e*(c*x^2+b*x)^(3/2)/d/(-b*e+c*d)/(e*x+d)^4-5/24*e*(-b*e+2*c*d)*(c*x^2 
+b*x)^(3/2)/d^2/(-b*e+c*d)^2/(e*x+d)^3-1/128*b^2*(5*b^2*e^2-16*b*c*d*e+16* 
c^2*d^2)*arctanh(1/2*(b*d+(-b*e+2*c*d)*x)/d^(1/2)/(-b*e+c*d)^(1/2)/(c*x^2+ 
b*x)^(1/2))/d^(7/2)/(-b*e+c*d)^(7/2)+1/64*(5*b^2*e^2-16*b*c*d*e+16*c^2*d^2 
)*(b*d+(-b*e+2*c*d)*x)*(c*x^2+b*x)^(1/2)/d^3/(-b*e+c*d)^3/(e*x+d)^2
 
3.3.93.2 Mathematica [A] (verified)

Time = 10.80 (sec) , antiderivative size = 243, normalized size of antiderivative = 0.94 \[ \int \frac {\sqrt {b x+c x^2}}{(d+e x)^5} \, dx=\frac {\sqrt {x (b+c x)} \left (48 e x^{3/2} (b+c x)+\frac {40 e (2 c d-b e) x^{3/2} (b+c x) (d+e x)}{d (c d-b e)}+\frac {3 \left (16 c^2 d^2-16 b c d e+5 b^2 e^2\right ) (d+e x)^2 \left (\sqrt {d} \sqrt {c d-b e} \sqrt {x} \sqrt {b+c x} (-b d-2 c d x+b e x)+b^2 (d+e x)^2 \text {arctanh}\left (\frac {\sqrt {c d-b e} \sqrt {x}}{\sqrt {d} \sqrt {b+c x}}\right )\right )}{d^{5/2} (c d-b e)^{5/2} \sqrt {b+c x}}\right )}{192 d (-c d+b e) \sqrt {x} (d+e x)^4} \]

input
Integrate[Sqrt[b*x + c*x^2]/(d + e*x)^5,x]
 
output
(Sqrt[x*(b + c*x)]*(48*e*x^(3/2)*(b + c*x) + (40*e*(2*c*d - b*e)*x^(3/2)*( 
b + c*x)*(d + e*x))/(d*(c*d - b*e)) + (3*(16*c^2*d^2 - 16*b*c*d*e + 5*b^2* 
e^2)*(d + e*x)^2*(Sqrt[d]*Sqrt[c*d - b*e]*Sqrt[x]*Sqrt[b + c*x]*(-(b*d) - 
2*c*d*x + b*e*x) + b^2*(d + e*x)^2*ArcTanh[(Sqrt[c*d - b*e]*Sqrt[x])/(Sqrt 
[d]*Sqrt[b + c*x])]))/(d^(5/2)*(c*d - b*e)^(5/2)*Sqrt[b + c*x])))/(192*d*( 
-(c*d) + b*e)*Sqrt[x]*(d + e*x)^4)
 
3.3.93.3 Rubi [A] (verified)

Time = 0.44 (sec) , antiderivative size = 271, normalized size of antiderivative = 1.05, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {1167, 27, 1228, 1152, 1154, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {b x+c x^2}}{(d+e x)^5} \, dx\)

\(\Big \downarrow \) 1167

\(\displaystyle -\frac {\int -\frac {(8 c d-5 b e-2 c e x) \sqrt {c x^2+b x}}{2 (d+e x)^4}dx}{4 d (c d-b e)}-\frac {e \left (b x+c x^2\right )^{3/2}}{4 d (d+e x)^4 (c d-b e)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {(8 c d-5 b e-2 c e x) \sqrt {c x^2+b x}}{(d+e x)^4}dx}{8 d (c d-b e)}-\frac {e \left (b x+c x^2\right )^{3/2}}{4 d (d+e x)^4 (c d-b e)}\)

\(\Big \downarrow \) 1228

\(\displaystyle \frac {\frac {\left (5 b^2 e^2-16 b c d e+16 c^2 d^2\right ) \int \frac {\sqrt {c x^2+b x}}{(d+e x)^3}dx}{2 d (c d-b e)}-\frac {5 e \left (b x+c x^2\right )^{3/2} (2 c d-b e)}{3 d (d+e x)^3 (c d-b e)}}{8 d (c d-b e)}-\frac {e \left (b x+c x^2\right )^{3/2}}{4 d (d+e x)^4 (c d-b e)}\)

\(\Big \downarrow \) 1152

\(\displaystyle \frac {\frac {\left (5 b^2 e^2-16 b c d e+16 c^2 d^2\right ) \left (\frac {\sqrt {b x+c x^2} (x (2 c d-b e)+b d)}{4 d (d+e x)^2 (c d-b e)}-\frac {b^2 \int \frac {1}{(d+e x) \sqrt {c x^2+b x}}dx}{8 d (c d-b e)}\right )}{2 d (c d-b e)}-\frac {5 e \left (b x+c x^2\right )^{3/2} (2 c d-b e)}{3 d (d+e x)^3 (c d-b e)}}{8 d (c d-b e)}-\frac {e \left (b x+c x^2\right )^{3/2}}{4 d (d+e x)^4 (c d-b e)}\)

\(\Big \downarrow \) 1154

\(\displaystyle \frac {\frac {\left (5 b^2 e^2-16 b c d e+16 c^2 d^2\right ) \left (\frac {b^2 \int \frac {1}{4 d (c d-b e)-\frac {(b d+(2 c d-b e) x)^2}{c x^2+b x}}d\left (-\frac {b d+(2 c d-b e) x}{\sqrt {c x^2+b x}}\right )}{4 d (c d-b e)}+\frac {\sqrt {b x+c x^2} (x (2 c d-b e)+b d)}{4 d (d+e x)^2 (c d-b e)}\right )}{2 d (c d-b e)}-\frac {5 e \left (b x+c x^2\right )^{3/2} (2 c d-b e)}{3 d (d+e x)^3 (c d-b e)}}{8 d (c d-b e)}-\frac {e \left (b x+c x^2\right )^{3/2}}{4 d (d+e x)^4 (c d-b e)}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {\left (5 b^2 e^2-16 b c d e+16 c^2 d^2\right ) \left (\frac {\sqrt {b x+c x^2} (x (2 c d-b e)+b d)}{4 d (d+e x)^2 (c d-b e)}-\frac {b^2 \text {arctanh}\left (\frac {x (2 c d-b e)+b d}{2 \sqrt {d} \sqrt {b x+c x^2} \sqrt {c d-b e}}\right )}{8 d^{3/2} (c d-b e)^{3/2}}\right )}{2 d (c d-b e)}-\frac {5 e \left (b x+c x^2\right )^{3/2} (2 c d-b e)}{3 d (d+e x)^3 (c d-b e)}}{8 d (c d-b e)}-\frac {e \left (b x+c x^2\right )^{3/2}}{4 d (d+e x)^4 (c d-b e)}\)

input
Int[Sqrt[b*x + c*x^2]/(d + e*x)^5,x]
 
output
-1/4*(e*(b*x + c*x^2)^(3/2))/(d*(c*d - b*e)*(d + e*x)^4) + ((-5*e*(2*c*d - 
 b*e)*(b*x + c*x^2)^(3/2))/(3*d*(c*d - b*e)*(d + e*x)^3) + ((16*c^2*d^2 - 
16*b*c*d*e + 5*b^2*e^2)*(((b*d + (2*c*d - b*e)*x)*Sqrt[b*x + c*x^2])/(4*d* 
(c*d - b*e)*(d + e*x)^2) - (b^2*ArcTanh[(b*d + (2*c*d - b*e)*x)/(2*Sqrt[d] 
*Sqrt[c*d - b*e]*Sqrt[b*x + c*x^2])])/(8*d^(3/2)*(c*d - b*e)^(3/2))))/(2*d 
*(c*d - b*e)))/(8*d*(c*d - b*e))
 

3.3.93.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1152
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_S 
ymbol] :> Simp[(-(d + e*x)^(m + 1))*(d*b - 2*a*e + (2*c*d - b*e)*x)*((a + b 
*x + c*x^2)^p/(2*(m + 1)*(c*d^2 - b*d*e + a*e^2))), x] + Simp[p*((b^2 - 4*a 
*c)/(2*(m + 1)*(c*d^2 - b*d*e + a*e^2)))   Int[(d + e*x)^(m + 2)*(a + b*x + 
 c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[m + 2*p + 2, 0] 
 && GtQ[p, 0]
 

rule 1154
Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Sym 
bol] :> Simp[-2   Subst[Int[1/(4*c*d^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, ( 
2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c 
, d, e}, x]
 

rule 1167
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_S 
ymbol] :> Simp[e*(d + e*x)^(m + 1)*((a + b*x + c*x^2)^(p + 1)/((m + 1)*(c*d 
^2 - b*d*e + a*e^2))), x] + Simp[1/((m + 1)*(c*d^2 - b*d*e + a*e^2))   Int[ 
(d + e*x)^(m + 1)*Simp[c*d*(m + 1) - b*e*(m + p + 2) - c*e*(m + 2*p + 3)*x, 
 x]*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[m 
, -1] && ((LtQ[m, -1] && IntQuadraticQ[a, b, c, d, e, m, p, x]) || (SumSimp 
lerQ[m, 1] && IntegerQ[p]) || ILtQ[Simplify[m + 2*p + 3], 0])
 

rule 1228
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(-(e*f - d*g))*(d + e*x)^(m + 1)*((a + 
 b*x + c*x^2)^(p + 1)/(2*(p + 1)*(c*d^2 - b*d*e + a*e^2))), x] - Simp[(b*(e 
*f + d*g) - 2*(c*d*f + a*e*g))/(2*(c*d^2 - b*d*e + a*e^2))   Int[(d + e*x)^ 
(m + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x 
] && EqQ[Simplify[m + 2*p + 3], 0]
 
3.3.93.4 Maple [A] (verified)

Time = 2.09 (sec) , antiderivative size = 243, normalized size of antiderivative = 0.94

method result size
pseudoelliptic \(-\frac {5 \left (\left (e x +d \right )^{4} \left (b^{2} e^{2}-\frac {16}{5} b c d e +\frac {16}{5} c^{2} d^{2}\right ) b^{2} \arctan \left (\frac {\sqrt {x \left (c x +b \right )}\, d}{x \sqrt {d \left (b e -c d \right )}}\right )+\left (\frac {16 c^{2} \left (2 c x +b \right ) d^{5}}{5}-\frac {16 c e \left (4 c x +b \right ) \left (-\frac {c x}{3}+b \right ) d^{4}}{5}+e^{2} \left (\frac {66}{5} b^{2} c x -\frac {104}{15} b \,c^{2} x^{2}+b^{3}+\frac {16}{15} c^{3} x^{3}\right ) d^{3}-\frac {73 x \,e^{3} b \left (\frac {24}{73} c^{2} x^{2}-\frac {140}{73} b c x +b^{2}\right ) d^{2}}{15}-\frac {11 x^{2} e^{4} \left (-\frac {38 c x}{55}+b \right ) b^{2} d}{3}-b^{3} e^{5} x^{3}\right ) \sqrt {x \left (c x +b \right )}\, \sqrt {d \left (b e -c d \right )}\right )}{64 \sqrt {d \left (b e -c d \right )}\, \left (e x +d \right )^{4} \left (b e -c d \right )^{3} d^{3}}\) \(243\)
default \(\text {Expression too large to display}\) \(2184\)

input
int((c*x^2+b*x)^(1/2)/(e*x+d)^5,x,method=_RETURNVERBOSE)
 
output
-5/64*((e*x+d)^4*(b^2*e^2-16/5*b*c*d*e+16/5*c^2*d^2)*b^2*arctan((x*(c*x+b) 
)^(1/2)/x*d/(d*(b*e-c*d))^(1/2))+(16/5*c^2*(2*c*x+b)*d^5-16/5*c*e*(4*c*x+b 
)*(-1/3*c*x+b)*d^4+e^2*(66/5*b^2*c*x-104/15*b*c^2*x^2+b^3+16/15*c^3*x^3)*d 
^3-73/15*x*e^3*b*(24/73*c^2*x^2-140/73*b*c*x+b^2)*d^2-11/3*x^2*e^4*(-38/55 
*c*x+b)*b^2*d-b^3*e^5*x^3)*(x*(c*x+b))^(1/2)*(d*(b*e-c*d))^(1/2))/(d*(b*e- 
c*d))^(1/2)/(e*x+d)^4/(b*e-c*d)^3/d^3
 
3.3.93.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 800 vs. \(2 (232) = 464\).

Time = 0.52 (sec) , antiderivative size = 1611, normalized size of antiderivative = 6.24 \[ \int \frac {\sqrt {b x+c x^2}}{(d+e x)^5} \, dx=\text {Too large to display} \]

input
integrate((c*x^2+b*x)^(1/2)/(e*x+d)^5,x, algorithm="fricas")
 
output
[-1/384*(3*(16*b^2*c^2*d^6 - 16*b^3*c*d^5*e + 5*b^4*d^4*e^2 + (16*b^2*c^2* 
d^2*e^4 - 16*b^3*c*d*e^5 + 5*b^4*e^6)*x^4 + 4*(16*b^2*c^2*d^3*e^3 - 16*b^3 
*c*d^2*e^4 + 5*b^4*d*e^5)*x^3 + 6*(16*b^2*c^2*d^4*e^2 - 16*b^3*c*d^3*e^3 + 
 5*b^4*d^2*e^4)*x^2 + 4*(16*b^2*c^2*d^5*e - 16*b^3*c*d^4*e^2 + 5*b^4*d^3*e 
^3)*x)*sqrt(c*d^2 - b*d*e)*log((b*d + (2*c*d - b*e)*x + 2*sqrt(c*d^2 - b*d 
*e)*sqrt(c*x^2 + b*x))/(e*x + d)) - 2*(48*b*c^3*d^7 - 96*b^2*c^2*d^6*e + 6 
3*b^3*c*d^5*e^2 - 15*b^4*d^4*e^3 + (16*c^4*d^5*e^2 - 40*b*c^3*d^4*e^3 + 62 
*b^2*c^2*d^3*e^4 - 53*b^3*c*d^2*e^5 + 15*b^4*d*e^6)*x^3 + (64*c^4*d^6*e - 
168*b*c^3*d^5*e^2 + 244*b^2*c^2*d^4*e^3 - 195*b^3*c*d^3*e^4 + 55*b^4*d^2*e 
^5)*x^2 + (96*c^4*d^7 - 272*b*c^3*d^6*e + 374*b^2*c^2*d^5*e^2 - 271*b^3*c* 
d^4*e^3 + 73*b^4*d^3*e^4)*x)*sqrt(c*x^2 + b*x))/(c^4*d^12 - 4*b*c^3*d^11*e 
 + 6*b^2*c^2*d^10*e^2 - 4*b^3*c*d^9*e^3 + b^4*d^8*e^4 + (c^4*d^8*e^4 - 4*b 
*c^3*d^7*e^5 + 6*b^2*c^2*d^6*e^6 - 4*b^3*c*d^5*e^7 + b^4*d^4*e^8)*x^4 + 4* 
(c^4*d^9*e^3 - 4*b*c^3*d^8*e^4 + 6*b^2*c^2*d^7*e^5 - 4*b^3*c*d^6*e^6 + b^4 
*d^5*e^7)*x^3 + 6*(c^4*d^10*e^2 - 4*b*c^3*d^9*e^3 + 6*b^2*c^2*d^8*e^4 - 4* 
b^3*c*d^7*e^5 + b^4*d^6*e^6)*x^2 + 4*(c^4*d^11*e - 4*b*c^3*d^10*e^2 + 6*b^ 
2*c^2*d^9*e^3 - 4*b^3*c*d^8*e^4 + b^4*d^7*e^5)*x), -1/192*(3*(16*b^2*c^2*d 
^6 - 16*b^3*c*d^5*e + 5*b^4*d^4*e^2 + (16*b^2*c^2*d^2*e^4 - 16*b^3*c*d*e^5 
 + 5*b^4*e^6)*x^4 + 4*(16*b^2*c^2*d^3*e^3 - 16*b^3*c*d^2*e^4 + 5*b^4*d*e^5 
)*x^3 + 6*(16*b^2*c^2*d^4*e^2 - 16*b^3*c*d^3*e^3 + 5*b^4*d^2*e^4)*x^2 +...
 
3.3.93.6 Sympy [F]

\[ \int \frac {\sqrt {b x+c x^2}}{(d+e x)^5} \, dx=\int \frac {\sqrt {x \left (b + c x\right )}}{\left (d + e x\right )^{5}}\, dx \]

input
integrate((c*x**2+b*x)**(1/2)/(e*x+d)**5,x)
 
output
Integral(sqrt(x*(b + c*x))/(d + e*x)**5, x)
 
3.3.93.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {\sqrt {b x+c x^2}}{(d+e x)^5} \, dx=\text {Exception raised: ValueError} \]

input
integrate((c*x^2+b*x)^(1/2)/(e*x+d)^5,x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(b*e-c*d>0)', see `assume?` for m 
ore detail
 
3.3.93.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1219 vs. \(2 (232) = 464\).

Time = 0.57 (sec) , antiderivative size = 1219, normalized size of antiderivative = 4.72 \[ \int \frac {\sqrt {b x+c x^2}}{(d+e x)^5} \, dx=\text {Too large to display} \]

input
integrate((c*x^2+b*x)^(1/2)/(e*x+d)^5,x, algorithm="giac")
 
output
-1/384*((48*b^2*c^2*d^2*e^3*log(abs(2*c*d*e - b*e^2 - 2*sqrt(c*d^2 - b*d*e 
)*sqrt(c)*abs(e))) - 48*b^3*c*d*e^4*log(abs(2*c*d*e - b*e^2 - 2*sqrt(c*d^2 
 - b*d*e)*sqrt(c)*abs(e))) + 15*b^4*e^5*log(abs(2*c*d*e - b*e^2 - 2*sqrt(c 
*d^2 - b*d*e)*sqrt(c)*abs(e))) + 32*sqrt(c*d^2 - b*d*e)*c^(7/2)*d^3*abs(e) 
 - 48*sqrt(c*d^2 - b*d*e)*b*c^(5/2)*d^2*e*abs(e) + 76*sqrt(c*d^2 - b*d*e)* 
b^2*c^(3/2)*d*e^2*abs(e) - 30*sqrt(c*d^2 - b*d*e)*b^3*sqrt(c)*e^3*abs(e))* 
sgn(1/(e*x + d))*sgn(e)/(sqrt(c*d^2 - b*d*e)*c^3*d^6*e^4*abs(e) - 3*sqrt(c 
*d^2 - b*d*e)*b*c^2*d^5*e^5*abs(e) + 3*sqrt(c*d^2 - b*d*e)*b^2*c*d^4*e^6*a 
bs(e) - sqrt(c*d^2 - b*d*e)*b^3*d^3*e^7*abs(e)) - 2*sqrt(c - 2*c*d/(e*x + 
d) + c*d^2/(e*x + d)^2 + b*e/(e*x + d) - b*d*e/(e*x + d)^2)*((16*c^3*d^3*e 
^4*sgn(1/(e*x + d))*sgn(e) - 24*b*c^2*d^2*e^5*sgn(1/(e*x + d))*sgn(e) + 38 
*b^2*c*d*e^6*sgn(1/(e*x + d))*sgn(e) - 15*b^3*e^7*sgn(1/(e*x + d))*sgn(e)) 
/(c^3*d^6*e^8 - 3*b*c^2*d^5*e^9 + 3*b^2*c*d^4*e^10 - b^3*d^3*e^11) + 2*((8 
*c^3*d^4*e^5*sgn(1/(e*x + d))*sgn(e) - 16*b*c^2*d^3*e^6*sgn(1/(e*x + d))*s 
gn(e) + 13*b^2*c*d^2*e^7*sgn(1/(e*x + d))*sgn(e) - 5*b^3*d*e^8*sgn(1/(e*x 
+ d))*sgn(e))/(c^3*d^6*e^8 - 3*b*c^2*d^5*e^9 + 3*b^2*c*d^4*e^10 - b^3*d^3* 
e^11) + 4*((2*c^3*d^5*e^6*sgn(1/(e*x + d))*sgn(e) - 5*b*c^2*d^4*e^7*sgn(1/ 
(e*x + d))*sgn(e) + 4*b^2*c*d^3*e^8*sgn(1/(e*x + d))*sgn(e) - b^3*d^2*e^9* 
sgn(1/(e*x + d))*sgn(e))/(c^3*d^6*e^8 - 3*b*c^2*d^5*e^9 + 3*b^2*c*d^4*e^10 
 - b^3*d^3*e^11) - 6*(c^3*d^6*e^7*sgn(1/(e*x + d))*sgn(e) - 3*b*c^2*d^5...
 
3.3.93.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {b x+c x^2}}{(d+e x)^5} \, dx=\int \frac {\sqrt {c\,x^2+b\,x}}{{\left (d+e\,x\right )}^5} \,d x \]

input
int((b*x + c*x^2)^(1/2)/(d + e*x)^5,x)
 
output
int((b*x + c*x^2)^(1/2)/(d + e*x)^5, x)